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We shall designate as a gas having anisotropic conductivity a completely 
ionized gas in the presence of an external magnetic field and sufficient- 
ly rarefied so that the electrons have spiral paths. In other words, we 
suppose that in the problem under consideration 

Here o is the Larmor frequency, and r the time between collisions of 
the electron and ion. 

Under conditions (1) for a completely ionized gas, the relation 
analogous to ohm’s law takes the form [ 1 1 

a(E+~vxH+~gradp,)=j+~jx H 

where CT is the conductivity of the medium in the absence of a magnetic 
field, p, the electron pressure, n the number of electrons per unit 
volume, and e the charge on the electron. 

Furthermore, we assume that the characteristic speeds and linear 
dimensions of the problem are such that a hydromechanical description of 
the medium is permissible. 

With these assumptions as to the properties of the gas, we consider 
the problem of the structure of a magnetohydrodynamic shock wave. This 
problem was set forth in 12 I, but the solutions obtained there are 
exact solutions of only part of the equations describing the problem of 
shock-wave structure, and may therefore lead to qualitative conclusions 
that do not apply to the full system of equations. 
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A shock wave is a surface of discontinuity separating two moving 
streams of ideal gas of which the thermodynamic parameters, and also the 
intensity of the electromagnetic field, are connected by known relations 
which express the laws of conservation of mass, momentum, energy, normal 
component of magnetic field, and tangential component of electric field. 

In considering the problem of shock-wave structure, it is customary 
to suppose that the shock wave appears as a narrow zone of change of the 
flow parameters, in which dissipation plays an essential role. Outside 
this zone the flow parameters change slowly, taking values at infinity 
that satisfy the conservation laws. In a system of coordinates in which 

the shock wave is at rest, the flow is a steady one-dimensional flow of 
non-ideal gas. 

We will assume that only dissipation of energy of the electric current 
plays an essential role within the shock-wave zone. We shall neglect 
dissipation of energy as a result of viscosity and heat conduction. 

The system of equations describing one-dimensional steady motion of a 
perfect gas under the assumptions adopted results in five algebraic rela- 
tions expressing the laws of conservation of mass, three components of 
momentum, and energy, and to two differential equations obtained from 
(2) and describing the variation of magnetic field within the wave: 

pa = m 

mu ip+g=J,, mv-$H,= Jp, mv-_fIz=J, (3) 

m 
( 

uz+vz + w2 
2 

+LL 
y---lp =E > 

dH 
--L = p [c&l, (UH, - VI!?,) - (WH, - UH,)] 

dx 

dA = p [all, (WH, - UH,) f (UH, - H,v)] 
dx 

a = Ok 
H’ P=$+;H,a 1 H, = const 

‘lhe third scalar equation obtained from (2) may be considered as an 
equation for the determination of E, if the gradient of electron pres- 
sure is given. 

We suppose the x-axis to be directed normal to the surface of the 
wave, and the y- and z-axes to lie in its plane. The system of coordi- 
nates is chosen so that ahead of the shock wave (that is, at x = - -1 
the magnetic field and velocity will be parallel; then E = 0 at n = - 09, 
and consequently E, = 0 by virtue of Maxwell’s equations. 
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We determine the constants in Equations (3) from conditions ahead of 
the shock wave (at x =,- m). ‘Ibe constants in Equations (4) are deter- 
mined by the physical properties of the medium and the intensity of the 
magnetic field. 

The solution of the problem of the structure of a shock wave is that 
solution of the system (3), (4) which assumes at x = f 00 given finite 
values of the flow parameters, where these values for x = - 00 and for 
x = + 00 are connected by the conditions at a shock wave in an ideal gas. 
We note that the relations at a shock wave in the present case coincide 
with the usual relations for a magnetohydrodynamic shock wave. 

We transform the relations (3) and (4) to dimensionless variables, 
relating all variables to the parameters of the oncoming stream: 

u = uou*, 2, = 2&p*, w = uow+, RT z &I,,~, u*p = pouo2fJ 

Hi = 1/8np,u,2hi (i = 2, Y, z) (9 

Here 8 is the dimensionless temperature, hi the dimensionless compo- 
nents of the vector of magnetic field intensity, u*, II* and w* the 
dimensionless velocity components. 

The choice of coordinate system (rotation about the x-axis) may always 
be made so that ahead of the shock wave 

w,, = H,, = J, = 0 (6) 

With relations (6) it follows, from the fourth equation (3) and the 
fact that the vectors U and B remain parallel behind the wave and lie in 
a plane with the corresponding vectors ahead of the wave 13 I, that 

WI = Ii,, = 0 (7) 

We will denote by index 1 parameters behind the wave. In the notation 
(5) and under the conditions (6), Equations (3) and (4) may be put in 
the following form: 

U*2 t 0 -t U*(h,2 -t 12,7 = U* (J1 - hx2) = J1*u* 

v* - 2h,h, = J2*, W’ - 2h,h, = 0 

u*2 + v*2 + w*2 
2 

-(- & fJ = 8’ 

(8) 
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+ iz,’ = (d - 2h,?) (a*~~~~~ -+ h,) - a*h,?J2’ 

+ h,’ = (u* - 2/2,*) (I2, - a%& - h,J, 

61: 
x*=;, J; = ‘? (1 - 2hx2), J,* = 1 -L e. + h,2 

5 

Ihe prime indicates the derivative with respect to the dimensionless CO- 

ordinate x*. 

Eliminating v*, #’ and 0 from relations (a), we obtain one relation 

connecting h*, h, and hZ 

f (r i_- 1) z.J*~ + ru* (h,2 -j- h,2) - 2 (r - 1) hx2 (h,? -j- hz2) - 

- yJ; - 2 (r - 1) J;h,h, - $ (y - 1) J; --i_ (r - 1) E* = 0 (40) 

The relation (10) describes in the space of u*, h,, hz a certain sur- 
face upon which must lie the integral curve of the system of equations 
(91 describing the structure of the shock wave. It is easy to verify that 
the initial point (u* = 1, h 
The section of the surface ( I 

= h,,, hE = 0) belongs to the surface (10). 
0) by the plane hZ = 0 represents the curve 

corresponding to the problem of the structure of a magnetohydrodynamic 
shock wave in a gas with isotropic conductivity, if only one coefficient 
of dissipation (I, is considered: 

$ (r $- 1) z&*2 -t_ @Q” - 2 (r - 1) hx2hy2 - yJ,‘u* - 

-2(~-1)J,‘h,~-~(~-I}J,““+(~-~)~‘=0 

This curve was investigated in detail in [ 4 I. 

Ihe surface (10) consists of circles lying in 
the P-axis, whose centers are on the hyperbola 

h, = (T - If sz* 
‘p* -Z(v--1)kX2 

One of the possible forms of the surface (10) is shown in Fig. 1. 

planes perpendicular to 

(12) 

At the points of the integral curve of the system (9) that correspond 
ton- f=, the right-hand sides of Equations (9) should vanish; that is, 
atx=Itm 

(u’ - Z&a) (ct’h,h, + h,) - a*hx2J,’ = 0 

(a’ - 2hx2) (I+, - a’h,h,) - h,J2” = 0 
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Hence it follows that in the space of u*, h,, hz points corresponding 
to conditions ahead of and behind the shock wave should lie on the inter- 

sections of the surface (10) and the 
hyperbolic cylinders (13) and (14). 

It is easy to verify that the cylin- 
ders (13) and (14) intersect in the 
hyperbola 

(u’ -- 2&Z) h, -- h,Jz* = 0 (15) 

Fig. 1. 

which lies in the plane hZ = 0. 

The generators of the cylinders (13) 
and (14) are perpendicular to each other. 

Thus points corresponding to conditions behind and ahead of the shock 
wave lie in the plane hZ = 0 (which follows also from (7)), and are points 
of intersection of the curve (11) with the hyperbola (15). In [4 1 and 
15 1 it was shown that there are no more than four such points, where if 
the stability of the waves is limited in the sense of [6 1 it is neces- 
sary to consider only two of these points of intersection, one of which 
will correspond to conditions ahead of the shock wave (u* = 1, hy = hy,,), 
and the other to conditions behind the shock wave. For definiteness we 
will assume that everywhere J,* > 0. Then fast waves (waves with intensi- 
fication of the field), for which 2hz2 < 1, will correspond to transitions 

0 < $-, < h,,, and slow waves (w_aves with weakening of the field) will 
correspond to transitions hyo < h 

Yl 
< 0. 

'Ihe angle of inclination of the tangent to the curve (11) at the point 
(u* = 1, hy = h,,) is 

du’ G/o 
dh,=-- 1 -re, 

(16) 

and the angle of inclination of the tangent to the hyperbola (15) at this 
same point is 

du' 2hx2 I-- 
dh, - h/o 

(17) 

If the right-hand sides are equal, that is, the curves (11) and (15) 
are tangent, the corresponding speed of the stream is equal to one of 
the magneto-sonic speeds. 

Depending upon the parameters behind and ahead of the shock wave [ 4 I, 
various types of intersection of the curves (11) and (15) are possible, 
as shown in Fig. 2. (Cases 2 and 2 correspond to fast waves and 3, 4 and 
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5 to slow waves. In case 5 the curves do not join). 

For investigation of the local properties of the point of intersection 

of the curves (11) and (15), we may suppose, without loss of generality, 

that at this point u* = 1 and h, = h,,. lhis can be achieved by changing 

the scale along the coordinate ixes;+that is, 

by referring all quantities in (15) to the 

values of the parameters at the point under 

consideration. 

At points IA, iB, 2A, 4A, 5A the speed of 

the stream is greater than the usual speed of 

sound and 

I-@,=I-&>0 
a 

(18) 

At the remaining points 

From 

that at 

1 --r%<O (1% 

geometric considerations it is evident 

points 1A, 24, 3B, 4B, 5B 

%, 1- __L < 
2h,” 

~--T&l hlJ0 
(20) 

and at points IB, 3A 

'lhe solution of the problem of shock-wave 

structure is the integral curve of the system 

(9) passing through the points of intersection 

of the curves (11) and (15) and lying on the 

surface (10). 

If u* is eliminated from Equation (9) by 

means of (101, the system of two equations (9) 

is equivalent to the one equation 

dhz (u* - 2h,“) (a* h,h, + h,) - ct*h,aJz* 
J& = (u* - 2h,“) (h, - a’h,h,) - h,Ja’ (22) 

where the points of intersection of the curves 

(11) and (151 are singular points of this 

equation. The qualitative behavior of the 

solution and, consequently, the qualitative 

‘* A 

h 

“* A 

c 

b 
I 

h 

A 

N 8 
3 

-h 

A 

u’ 

u+ 

u c 
4 8 

-h 

LEI 
UC 

A 

8 

5 c 
-h 

Fig. 2. 



272 G.A. Liubinov 

nature of the flow behind the zone representing a shock wave in a gas 

with anisotropic conductivity, will depend on the character of these 

singular points. 

In order to ascertain the character of the singular points of Equation 

(22) it is necessary in the neighborhood of these points to replace the 

surface (10) by its tangent plane and proceed in the usual way. 7he 

character of the singular points is determined by the sign of the dis- 

criminant D of the characteristic equation formed from the coefficients 

of the linear terms in 

side of Equation (22) : 

the numerator and denominator of the right-hand 

(1 - 2hx~)jS + (1 - 2h,2) [So - (1 - 2hx2)] x 

x (1 -I_ CC*~/Z~‘) = (1 2;8 )2 _1- u*2hx2 (1 - 2hx2) h,, [iao - I+] (23) 
0 UO 

The character of the singularity is a local property of the point, SO 

that it is always possible to suppose that the singular point has CO- 

ordinates u* = 1, h,, = h,,“, hZ = 0 and distinguish the singular points 

according as the inequalities (18) to (21) are satisfied for a given 

point. 

If D > 0, the singular point is a node if the inequality (21) is 

satisfied, and a saddle if the inequality (20) is satisfied. If B < 0, 

the singular point is a focus. 

Hence it follows that points lB and 3A are saddles. Points fi, 24, 3B, 

4B, 5B are nodes if D > 0 (a *‘h 2 x small), and foci if D < 0 (ar2hx2 large). 

At points 2B and 5A the square brackets 

in (23) are negative, and there is con- 

sequently a node if a*2hx2 is small, and 

afocusifa x *2h 2 is large. 

The direction of movement along the 

integral curve as x* increases at any 

point depends on the position of that 

point with respect to the cylinders (13) 

and (14). If the line of intersection of 

(13) and (14) with the surface (10) is 

projected onto the tangent plane to (10) 

at the singular point, then it is possi-, 

Fig. 3. ble to draw in the tangent plane the 

field of isoclines and to determine the 
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direction along the integral curves in the vicinity of each singular 

point. 

Such an investigation shows that for fast waves all nodes and foci are 

outgoing (the integral curve leaves these points as x increases), and for 

slow waves the integral curve always enters nodes and foci. 

Hence it follows inxnediately, for example, that in cases 2, 4 and 5 

it is impossible to construct a continuous flow inside the shock-wave 

zone. In these cases, a gasdynamic discontinuity appears inside the region 

of the wave, which is possible in our formulation of the problem as a 

consequence of the neglect of viscosity and heat conduction. 

In Figures 3 and 4, the general form of the integral curves is shown 

as an example, and the integral curves corresponding to the problem of 

shock-wave structure are drawn qualitatively for cases 1 and 2. The 

figures give a view of the surface (10) in the direction of the hy-axis. 

The closed curves represent the projections of lines of intersection 

of the surface (10) with the cylinders (13) and (14). 'lhe figures corre- 

spond to small values of a *2hz2, when point A is a node. 

The foregoing analysis makes it possible to describe qualitatively the 

behavior of the solution within the zone representing the shock wave in 

all the cases 1 to 5. 

1. If conditions are such that the spiral path of the electrons is 

not large (a *2h 2 small), point A is a node. Point B is a saddle. 'Ihe 
character of the" integral curves is shown in Fig. 3. 

In this case there exists a unique integral curve joining points A 
and B and describing the solution of the problem of shock-wave structure. 

The quantities u* and h, change monotonically through the wave. 

The component hZ of the magnetic field first grows from zero to a 
certain value, and then decreases to zero. 

If the spiral path of the electrons is large, point A is a focus. Ihe 
end of the magnetic field intensity vector describes at first a certain 

spiral curve in space, and then decreases to zero. 

In the general cases the motion within the wave is continuous. 

2. In the vicinity of point A the behavior of the solution is the same 
as in case 1. EW because in this case it is impossible to construct a 

continuous solution between points A and B (this is connected with the 
fact that in such a solution there would be a point where M= l), a gas- 

dynamic shock appears inside the shock-wave zone. 'Ihe solution of the 
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problem of shock-wave structure corresponds to an integral curve leaving 
A that passes through a point C(u* = ul*, hy = hyl, hZ = 0). Within the 
wave the flow parameters at first vary continuously (to point C), and 
there then arises a gasdynamic shock with continuous magnetic field that 
takes the gas from condition C to condition B. The character of the 
integral curves for small a*2hx2 is shown in Fig. 4. 

3. Point A is a saddle; point B a node or focus. The motion inside 
the wave-zone proceeds continuously according to an integral curve cor- 
responding to one of the principal directions of the saddle A. ‘Ihe 
variation of magnetic field near point 
B is analogous to its variation near 
point A in case 1. 

4. Points A and B are nodes or foci 
into which integral curves enter. A 
continuous solution is impossible. ‘Ihe 
wave-zone begins with a gasdynamic 
shock at which the magnetic field is 
continuous, followed by a region of 
continuous variation of the parameters. 

The character of the behavior of the 
magnetic field near point B is 
analogous to that in case 3. 

5. ‘Ihe character of the solution is 
the same as in case 4. 

Fig. 4. 

Thus the character of the flow within the zone representing the shock 
wave depends essentially upon the magnitude of the spiral path of the 
electrons and upon the character of the wave itself (fast or slow). In- 
dependently of the form of the wave, the solution describing its struc- 
ture corresponds to a three-dimensional flow. 

The magnetic field intensity vector varies inside the wave in such a 
way that its end may, for large spiral paths of the electrons, rotate so 
as to describe a spiral trajectory, but this turning does not correspond 
to a rotation of the vector H about the x-axis. If the spiral path of 
the electrons tends toward zero (a* + O), the shock wave is converted 
into an ordinary magnetohydrodynamic shock wave. 

The thickness of the shock wave, if it is strong, may be taken as the 
distance in which the magnetic field and all other quantities change by 
an amount of the order of their values ahead of the shock wave. If the 
shock-wave thickness is determined in this way, it follows from (4) that 
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if or ,,, 1, then 

1 - &-$l + a2Hx2)- & (1 + NW) 

if or >> 1, then 

1 -- 9 1 f aaHx2 

4n6u0 aH, 

These relations show that the thickness of a magnetohydrodynamic 

shock wave is greater in a gas with anisotropic conductivity than the 

thickness of a conventional magnetohydrodynamic shock wave 

Furthermore, for large spiral path of the electrons (or >> 1) the 
thickness of the shock wave in a gas with anisotropic conductivity be- 

comes of the order of magnitude of the Larm~r radius of the ions 

1 -- P -- CH cH2uOmi 

4n6u 0X = 4nu,nl 
- Ri 

0 4npuoa1H 

in the case that the energy of the magnetic field is comparable with the 

kinetic energy of the medium ( H ‘/~RQ p u02 1. 

Projecting (2) onto the x-axis, we obtain 

(24) 

As mentioned earlier, this equation serves to determine E,(x) for 
given p, and solution of the system (4). If the chaotic speeds of the 
ions and electrons are equal in magnitude, and so are their numbers per 
unit volume, then it is possible to assume that 2pe = p(pi = p,). 

Then since Ez(x) is found, the equation dEz/u!z = 4t7pe determines the 
space-charge density inside the wave as a function of x. 
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